

TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning

Yuan Sui^{1*}, Jiaru Zou^{2*}, Mengyu Zhou^{3#}, Xinyi He⁴, Lun Du⁵, Shi Han³, Dongmei Zhang³

¹National University of Singapore, ²University of Illinois Urbana-Champaign, ³Microsoft,

⁴Xi'an Jiaotong University, ⁵Ant Research

yuansui@comp.nus.edu.sg, jiaruz2@illinois.edu, hxyhxy@stu.xjtu.edu.cn, {mezho,shihan,dongmeiz}@microsoft.com, dulun.dl@antgroup.com

Overview

- Introduction & Demonstration
- Challenges when leveraging LLMs for table reasoning
- Framework of Tab4LLM (e.g., table sampling, table augmentation, table packing & serialization)
- Experiment Results & Findings

	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%

	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%
		•••	•••		

How to leverage LLMs to solve table reasoning tasks?

	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%
		•••	•••	•••	

Utterance: Which category achieves the most sales in 2016?

How to leverage LLMs to solve table reasoning tasks?

	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%
			•••		Which part

Vhich part of a table should be kept in the prompt?

Utterance: Which category achieves the most sales in 2016?

How to leverage LLMs to solve table reasoning tasks?

	Year	Category	Product	Sales	Rating	
R1	2016	Components	Chains	\$20,000	75%	
R2	2017	Clothing	Bib-Shorts	\$4,000	22%	
R3	2016	Clothing	Socks	\$2,300	28%	
R4	2016	Accessories	Helmets	\$3,400	36%	
R5	2017	Components	Brakes	\$5,400	38%	
			•••		Which part	of a table should be

tept in the prompt?

What additional/external knowledge could help LLMs better understand a table? (e.g., Wikipedia, metadata, statistics, etc.)

Whic	ch part of a table should be
Rating	kept in the prompt?
75%	
22%	

	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%
	•••				

Utterance: Which category achieves the most sales in 2016?

	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%

Which part of a table should be

kept in the prompt?

(1) Table Sampling

■ Sample	nce (user query) ed column headers ed Rows {R1,R3,R4 Fable:	
Year	Category	Sales
2016	Components	\$20,000
2016	Clothing	\$2,300
2016	Accessories	\$3,400

Utterance: Which category achieves the most sales in 2016?

Which part of a table should	be
kept in the prompt?	

	Year	Category	Product	Sales	Rating	
R1	2016	Components	Chains	\$20,000	75%	
R2	2017	Clothing	Bib-Shorts	\$4,000	22%	
R3	2016	Clothing	Socks	\$2,300	28%	
R4	2016	Accessories	Helmets	\$3,400	36%	
R5	2017	Components	Brakes	\$5,400	38%	
			•••	•••		

(1) Table Sampling

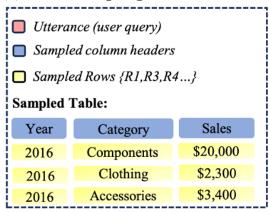


 Table Sampling: Decompose a large table T into a sub-table T' with specific rows and columns

Utterance: Which category achieves the most sales in 2016?

What additional/external knowledge could help LLMs better understand a table

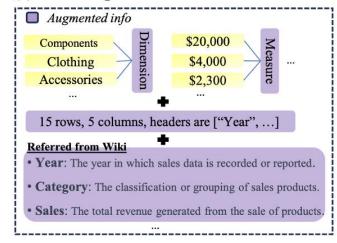
	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%
		•••	•••		

Utterance: Which category achieves the most sales in 2016?

What additional/external knowledge could help LLMs better understand a table

	Year	Category	Product	Sales	Rating
R1	2016	Components	Chains	\$20,000	75%
R2	2017	Clothing	Bib-Shorts	\$4,000	22%
R3	2016	Clothing	Socks	\$2,300	28%
R4	2016	Accessories	Helmets	\$3,400	36%
R5	2017	Components	Brakes	\$5,400	38%
			•••		

(2) Table Augmentation



Utterance: Which category achieves the most sales in 2016?

What additional/external knowledge could help LLMs better understand a table

	Year	Category	Product	Sales	Rating	
R1	2016	Components	Chains	\$20,000	75%	
R2	2017	Clothing	Bib-Shorts	\$4,000	22%	
R3	2016	Clothing	Socks	\$2,300	28%	
R4	2016	Accessories	Helmets	\$3,400	36%	
R5	2017	Components	Brakes	\$5,400	38%	

(2) Table Augmentation

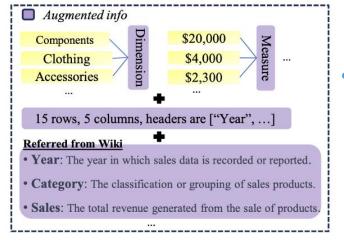
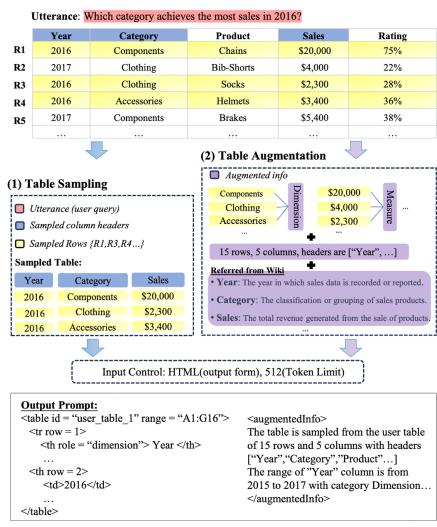


Table Augmentation: Incorporate relevant external knowledge, metadata, and attributes about the original table T explicitly.



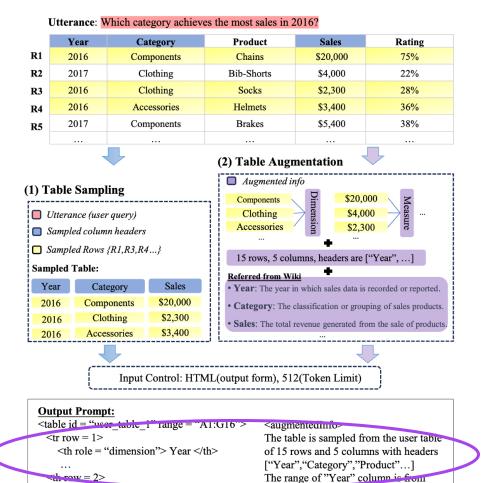
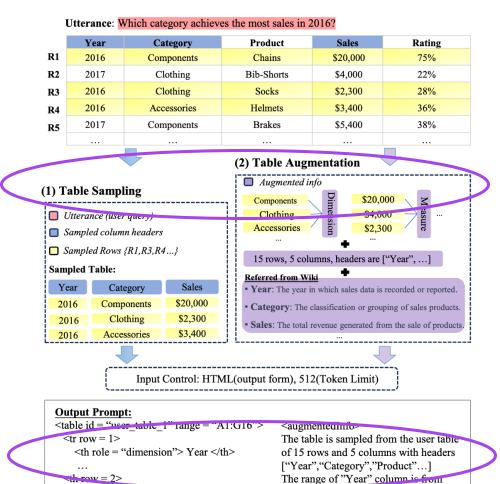


Table Packing & Serialization: convert table(s) into various formats suitable for LLMs' understanding while control the token allocation for table sampling and augmentation.

2015 to 2017 with category Dimension...

</augmentedInfo>

2016



How to encode the table into a prompt, balancing table augmentation and table sampling?

Table Packing & Serialization: convert table(s) into various formats suitable for LLMs' understanding while control the token allocation for table sampling and augmentation.

2015 to 2017 with category Dimension...

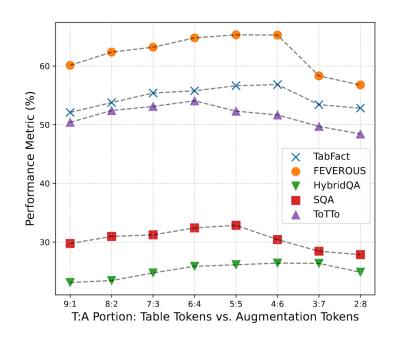
</augmentedInfo>

2016

• Table augmentation prevents LLMs from partially understanding table(s) after table sampling, which may remove essential rows/columns.

- Table augmentation prevents LLMs from partially understanding table(s) after table sampling, which may remove essential rows/columns.
- It leverages the summarization, statistics, and metadata derived from the entire table to compromise the trade-off and reduce information loss.

- Table augmentation prevents LLMs from partially understanding table(s) after table sampling, which may remove essential rows/columns.
- It leverages the summarization, statistics, and metadata derived from the entire table to compromise the trade-off and reduce information loss.



A balanced token distribution between the table and augmentation (approximately 5:5 or 4:6, referred to as the balanced T:A ratio)

Experiment Results & Findings

 Table sampling: Focusing on key rows/columns can improve LLMs' comprehension of tables

Sampling Type Table Sampling Methods			FEVEROUS	TabFact	HybridQA	ТоТТо
	Random Sampling	27.30%	60.30%	55.17%	23.60%	40.12%
Rule-based Sampling	Evenly Sampling	26.72%	61.87%	54.63%	5.32%	29.41%
	Content Snapshot (Yin et al., 2020)	28.24%	63.10%	56.92%	23.40%	47.51%
	Centroid-based Sampling	28.10%	63.50%	55.40%	24.03%	48.30%
Embadding based Compling	Semantic-based Sampling	28.32%	63.32%	59.80%	24.32%	49.14%
Embedding-based Sampling	w/ Column Grounding	29.12 %	64.74%	60.23%	25.14%	53.42%
	Hybrid Sampling	28.79%	<u>65.34%</u>	<u>61.37%</u>	24.71%	51.63%
LLM-based Sampling LLM-Decomposer (Ye et al., 2023b)		27.98%	62.34%	58.74%	24.98%	48.13%
_	No sampling (GPT-3.5)	27.60%	60.12%	56.20%	14.10%	47.42%
	No sampling (GPT-3.5, truncated)	23.54%	43.54%	52.12%	23.12%	30.42%

Experiment Results & Findings

- Integrating metadata or statistics features of tables can consistently reduce factual inaccuracies in LLMs and improve overall reasoning performance
- Explaining unusual terms in table(s) or adding supplemental relevant web pages as the references could further enhance LLMs' understanding of table(s)

	SQA		FEVEROUS		TabFact		HybridQA		ТоТТо	
Augmentation Aspect	Acc	cc Delta Acc Delta Acc Delt		Delta	Acc Delta		BLEU-4	Delta		
baseline	28.32%	0.00%	63.32%	0.00%	59.80%	0.00%	24.32%	0.00%	49.14%	0.00%
D/M + SF	30.12%	1.80%	65.72%	2.40%	62.67%	2.87%	26.12%	1.80%	51.25%	2.11%
Table Size	28.85%	0.53%	63.40%	0.08%	60.30%	0.50%	24.94%	0.62%	49.03%	-0.11%
Statistics Feature	31.22%	2.90%	66.51%	3.19%	62.33%	2.53%	26.13%	1.81%	50.57%	1.43%
Header Hierarchy	-	-	-	-	-	-	-	-	48.64%	-0.50%
Docs References	33.45%	5.13%	63.13%	-0.19%	61.32%	1.52%	25.12%	0.80%	52.74%	3.60%
Term Explanations										
- LLM-based	31.59%	3.27%	64.12%	0.80%	62.32%	2.52%	26.24%	1.92%	53.21%	4.07%
- Heuristics-based	29.59%	1.27%	63.72%	0.40%	61.58%	1.78%	25.24%	0.92%	51.21%	2.07%
Self Prompting	30.45%	2.13%	65.24%	1.92%	62.32%	2.52%	26.64%	2.32%	52.36%	3.22%

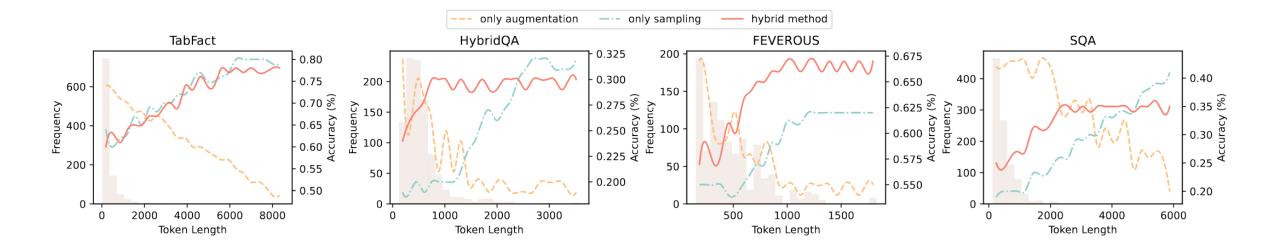
Ablation Study

• All components of TAP4LLM contribute to its performance, with table sampling and augmentation being particularly critical.

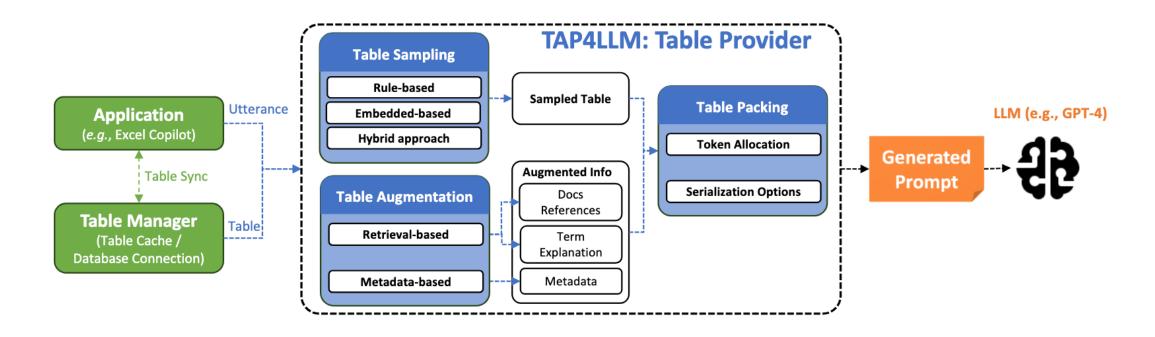
	SQA		FEVEROUS		TabFact		HybridQA		ТоТТо	
Components of TAP4LLM	Acc	Delta	Acc	Delta	Acc	Delta	Acc	Delta	BLEU-4	Delta
All	34.12%	0.00%	68.32%	0.00%	64.78%	0.00%	27.87%	0.00%	54.93%	0.00%
w/o table sampling	26.54%	<u>-7.58%</u>	61.54%	<u>-6.78%</u>	58.12%	<u>-6.66%</u>	24.12%	<u>-3.75%</u>	48.47%	<u>-6.46%</u>
w/o table augmentation - all	29.12%	-5.00%	63.74%	-4.58%	60.23%	-4.55%	25.14%	-2.73%	53.42%	-1.51%
w/o table augmentation - metadata-based	33.87%	-0.25%	64.38%	-3.94%	62.78%	-2.00%	26.98%	-0.89%	53.42%	-1.51%
w/o table augmentation - retrieval-based	31.42%	-2.7%	66.23%	-2.09%	62.97%	-1.81%	26.33%	-1.54%	52.67%	-2.26%
w/o table packing	31.87%	-2.25%	67.42%	-0.90%	63.28%	-1.50%	26.32%	-1.55%	52.87%	-2.06%

Larger Table Analysis

• For smaller table(s), table augmentation typically yields better results, while for larger tables, sampling performs better. This aligns well with human intuition and our understanding of information entropy.



Broader Application & Plugin Module



- Table manager acts as in intermediary, managing the data that is either stored locally in a cache or accessed through a database connection.
- Table sync is crucial for "interactive table reasoning" and for maintaining data integrity.

• TAP4LLM (Table Provider for LLM) is a powerful toolkit designed to enhance the interaction between LLMs and structured table data.

- TAP4LLM (Table Provider for LLM) is a powerful toolkit designed to enhance the interaction between LLMs and structured table data.
- It provides optimized prompt designs and robust functionalities to ensure high-quality outputs when LLMs process table-related inputs.

- TAP4LLM (Table Provider for LLM) is a powerful toolkit designed to enhance the interaction between LLMs and structured table data.
- It provides optimized prompt designs and robust functionalities to ensure high-quality outputs when LLMs process table-related inputs.
- It enables high flexibility and can serve as a plugin module for various table reasoning pipelines.